200 Ohm Chopper December 20012 Update

Greg Saewert
Project X Meeting, 12/4/2012

Topics

3D model and wound helix comparison Bipolar switch development Examined damping helix dispersion

Effort since April 2012

- Work with M. Hassan (Tech. Div.) to 3D model helix having proper delay and 200 Ohm impedance
- Complete the design of a 200 Ohm system
 - Priority went to designing a bipolar driver
 - Shift away from concentrating on 500 V single-switch
 - Secondary priority is to pursue output voltages beyond 100 V
 - Four PCBs are designed

Helix in the winding fixture

¼ m Helix

Helix only

Electrodes and OV plane attached

Helix-only impedance TDR measurement

Helix impedance TDR measurement Electrodes and 0 V plane attached

Delay measurement

200 Ohm chopper block diagram

Bipolar driver components

(one PCB design per "component")

- Isolated gate driver
 - One board delivers kicker timing signals to high-side and lowside switches
- Cascode driver stage
 - One each for high-side and low-side switches
 - Capable of 100 V (assuming a Polyfet Devices FET)
- Cascode common gate stages
 - Added for >100 V switching
 - One added stage for every additional 100 V
- Power distribution board
 - Single 5 Vdc input powers the bipolar switch
 - VAC delivered to each cascode driver board
 - VAC delivered to each common gate board
 - DC power delivered to the isolated gate board

Bipolar switch (with gate driver)

Isolated gate driver design features

- High transient immunity
 - Designed for 500 kV/μs anticipating 500 V switching
- Tight timing control
 - 80 MHz operation for chopping every other bunch
 - 74AUC1G00 logic gates used have 275 MHz clock speed
- PCBs are in-house are ready to be assembled

Cascode driver stage design features

- Predictable timing adjustability to better than 0.1 ns down to < 1.0 ns flattop
- Reliable break-before-make functionality
 - 1.2 ns dead-time guaranteed by S-R latch design
 - Provision to add more delay
- On board DC voltages are well regulated and adjustable
 - No zener diodes for voltage regulation
 - Every circuit stage has independently defined DC voltages
- Design includes all considerations for 500 V operation
 - Designed to operate with and without common gate stages attached
 - Design includes lessons learned from 1st high voltage prototype operated at 480 V

Cascode driver stage performance

Cascode driver stage

Cascode driver circuit board

Cascode driver PCB layout

Dispersion damping – D. Wolff, H. Pfeffer (test using 55 turn helix)

Summary

- A wound helix closely matches 3D model
- Helix end effects can be reduced
- Bipolar driver PCB status
 - Isolated gate driver boards just arrived
 - 3 PCBs are in the layout queue

Near future effort

- We Need mechanical engineering resources
- Complete bipolar driver
 - Use it to drive "official" helix and make power loss measurements
 - Operation beyond 100 V will be pursued
- We will better quantify 200 Ohm structure when all components arrive
 - Vacuum feed throughs are to be delivered in Dec.